Aperam has announced a new “slinky” production method for making iron-cobalt (FeCo) alloy stators and rotors for high-performance electric motors. The company says the approach adapts an in-plane helical winding process—already used for electrical steel—to FeCo alloys, which it describes as difficult to form despite “exceptional magnetic performance.”
Aperam’s slinky method forms motor components from continuous strips instead of stamping them from sheet metal. It uses a combination of linear stamping and in-plane helical bending to create slinky stators and rotors. The process reduces metal scrap to 10–30%, versus conventional methods that can waste up to 70% of the high-cost material.
Aperam says that combining FeCo alloys with the slinky process yields +35% power density for eVTOL aircraft, +25% torque for hypercars and –15% motor size, which it calls essential for aviation weight constraints.
The approach is built around Aperam’s AFK family of FeCo alloys, including IMPHY AFK1, AFK18 and AFK502R.
“FeCo alloys offer unparalleled magnetic performance, but their cost has historically limited their efficient use,” said Frederic Mattei, CEO Alloys and Specialties and CIO at Aperam. “With ‘slinky’, we drastically reduce waste and also enable the design of more efficient electric motors, helping our customers meet the growing demands of sustainable transportation.”
Source: Aperam
from Charged EVs https://ift.tt/QwnYhRP
No comments:
Post a Comment